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ABSTRACT 

The generally accepted integral end differential forms for analysis of non-isothermal 
kinetic data are .- 

g(a) =$ [ exp(-E/RT). iiT 

and 

da A 
do =F =p(--E/R?‘I f(a) 

Very often,. these equations do not clearly e’;d unambiguously indicate the reaction 
mechanism involved.. The gene@ trend to determine the mechanism on the basis of good- 
ness of mathematical fit of data makes the t&k more formidable. Two other forms of 
integral and differential methods have been proposed to obviate this difficulty. These, in 
logar+nic forms, are 

In g(a) -+I(+ - To) = In -& 

and 

). II -E. 
RT 

The analysis, based on these two equations,- requires a logical choice of the functions 
f(ar) and g(ar) by trying out in turn all the.known forms available in literature. Amongst all 
the logical possibilities. the one with comparable E and A obtained for both the forms is 
suggestive of the possible rG$ion me&en&n 

The equation (valid- for linear rate of he&g, @) is .derived by replacing the time of 
’ rbacticin, t, by (T - TO)/& The differential form is solved by an iterative method to obtain 
cdasigtent.~~~.ofErindA.-.._. .-.- ‘.: :. .- : -. . . ;_ 

Experiment&l data of .thermal dehyd+%ylation ‘of Mg(OH)z; as published by F&g &nd 
Chen,., are re&elyzed- by the& ~~niethods. The r&&s indicate that a diffusion-control- 
led~mecha&smisinvolved.~ :-i .. . . . . -.:. .. : _ .I_ :: ..,. 

.* . 
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INTRODUCTION 

For analyses of kinetic problems, 
used. One equates the rate of reaction 

$= k f(a) 

two different types of equations are 
with a function of 01 as 

(1) 

The other equates another function of or with reaction time (t) as 

g(e) = k2t (2) 

Equations (1) and (2) are interrelated and, for isothermai cases, differenti- 
ation of eqn. (1) gives eqn. (2). The relationship between f(e) and g(e) is 
given by 

f(a) =--A- 
g’(e ) 

where 

g’(a) = $ MN1 

(3) 

(W 

The relationship between the kinetic’constant (k) and temperature (2’) of 
reaction is expressed by the well-known Arrhenius equation 

k =A exp(--E/RT) (4) 

It is believed that these relationships [eqns. (n)-(4)] are also valid for 
non-isothermal cases (at Ieast, empirically). It may be argued that in this case, 
E and A will not have the same significance as they have for isothermal 
homogeneous reactions. To bypass this dilemma, it may be assumed that for 
non-isothermal heterogeneous reactions, E is the “derived activation energy” 
and A is the “derived frequency factor” (whatever may be their theoretical 
meanings). 

For a constant heating rate (p), the relationship between temperature (7’) 
and time (t) is 

T=T,+@ (5) 
where T,, = reaction onset temperature, 

In order to obtain an overall relationship for non-isothermal kinetics, 
eqns. (l), (4) and (5) are combined to yield 

$+$ exp(--E/RT) f(e) (6) 

or 

de A 
- =- exp(-EIRT) dT 
f(ff) P 

(7) 

This, when integrated between proper @its, gives .- 
. 

‘. exp(-E/RT) dT 

. 

‘(ii) 
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As the rate of reaction is very sIow in the temperature range O--T,, the fol- 
lowing approximation is assumed [l] to be valid 

p exp(-E/RT) dT = f exp(-E/RT) dT (9) 
TO 0 

Hence, eqn. (8) assumes the form 

exp(-E/RT) dT (10) 

When the values of (11 are known as a function of T, eqn. (10) is used to 
determine E and A. The exponential integral is evaluated with the help of 
various approximate solutions suggested [Z-6] so far. When the reaction rate 
do/dT is known as a function of T, eqn. (6) may be used to determine E and 
A. 

Apart from eqns. (6) and (lo), another set of relationships may be formu- 
latedl if eqns. (2); (4) &d (5) are-combined to get 

g(o) =$ exp(-E/RT) (T - TO) 

On differentiation, eqn. (11) becomes 

(11) 

da A 
g’(a) - dT =T expt-EIRT) + p Aexp(-E/RT)& (T 

Or, on re-arran gement 

dar A -=- 
dT P 

exp(-E/R?‘) 1 + 
E(T-To) 1 

RTZ 1 g’o 
Recalling eqn. (3), eqn. (13) may be rewritten as 

da A 
a~=7 exp(-E/RT) 1 + R(:GTo) f(a) 1 

- To) (12) 

(13) 

(14) 

Equations (11) and (14) may also be taken as valid relationships for non- 
isothermal kinetics if the results obtained by analyzing non-isothermal data 
by these two methods can easily be explained logically. Thus, four different 
relationships, as tabulated in Table 1, are obtained for non-isothermal kinetics. 
To test their applicability some published data are re-analyzed by these 
methods. 

ANALYSIS OF KINEI’IC DATA 

Fong and Chen [7] have published some experimental data for the ther- 
mal dlzhjldroxylation .of Mg(OH)l. Their data are reproduced in Table 2.l?or 
a single sample, they have taken duplicate data curves and denoted them as 
Traces 1 and 2 [cf. Fig. 2 of ref. 71. A constsnt heating rate -of p = 0.0333 K 
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TABLE 2 ‘- : 

Dali for &e th& dehJrdro@atioi of Mg(OH)g [ 7 ] 

Data Trace 1. Trace 2 
_._Y 

Time T a (da/dT) x lo2 Time T a (da/dT) x- lo2 
(s) WI. W-’ 1 (61 WI @-‘I 

1 0 
2 48 
3 84 
4 120 

:. 
168 
204 

7 240 
8 276 
9 324 
10 360 
11 408 
12 432 
13 468 
14 504 
15 552 
16 588 
17 624 
18 6?2 
19 708 
20 744 
21 792 

618 0.0251 
622 0.0342 
625 0.0478 
628 0.0592 
632 0.0797 
636 0.0957 
638 0.1162 
641 0.1435 
645 0.1777 
648 0.2141 
652 0.2620 
654 0.2894 
657 0.3485 
660 0.4100 
664 0.4715 
667 0.5308 
670 0.5900 
674 0.6538 
677 0.7107 
680 0.7563 
684 0.7950 

- 
- 

0.890 
0.443 
0.532 
0.622 
0.736 
0.871 
1.077. 
1.243 
1.462 
1.666 
1.703 
1.812 
1.897 
1.905 
1.859 
1.710 
1.533 
1.305 

72 
108 
156 
192 
228 
264 
312 
348 
384 
420 
456 
504 
540 
576 
612 
648 
696 
732 
780 

616 0.0229 
619 0.0275 
622 0.0344 
625 0.0528 
629 0.0619 
632 0.0780 
635 0.1055 
638 9.1284 
642 0.1683 
645 0.1950 
648 0.2202 
651 0.2661 
664 0.3165 
658 0.3762 
661 0.4289 
664 0.4977 
667 0.5528 
670 0.6147 
674 0.6789 
677 0.7294 
681 0.7706 

- 
- 

0.336 
0.427 
0.527 
0.603 
0.690 
0.793 
0.968 
1.103 
1.261 
1.426 
1.590 
1.787 
1.902 
1.972 
1.982 
1.914 
1.668 
1.342 
- 

S-* was maintained throughout the experiment. Reaction onset temperature 
(To), which may be defined as a temperature at which a is negligibly small, is 
618 I( for Trace 1 (here a! = 0.0251) and 616 K for Trace 2 (here CK = 0.0229). 
Using the value of T,-,, the time of reaction (i.e. t) may be calculatedusing 

TABLE 3 
Kinetic parameters obtained by various methods for the 
Mg(OH)~aareportedby.FongandChen[7] 

thermal dehydroxylation of 

CompoutingMethod Trace1 Trace2 

E A n E A n 

~wp! 
(i) Coatsandkedfern 

[4] : ;;r3; ywE;;i 1.5 235.91 0.9lB +16 1.5 
(ii) gatava[91-: . 1.5 236.90 0.95E + 16 1.5 

Differential 
.(i) .Cben-and Fong[8] 221.90. 0.12E +I6 1.6 223.57 0.16E +16 1.6 

E = Derived activation energy ‘(kJ mole-‘). 
A = Derivedfrequency factor(s-I). 
n = Order of reac$ion. 
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the relationship [derived from eqn. (5)] 

t = (T - G)/P (5a) 

Fong and Chen [ 73 used both differential and integral methods to analyze 
their data. For the differe;ltial method [eqn. (6)] they used a combined 
numerical method which was proposed by them [8]. To analyze the same 
data hy the integral method_ [eqn. (lo)], they employed the methods of 
Coats and Redfem [4] and Satava [9]. They, cfter all these analysts, have 
concluded that the reaction obeys a kinetic law of the type 

f(a) = (1 -a)” (15) 

where n = order of reaction. 
Different values of n, E and A, as reported by Fong and Chen 173, are 

given in Table 3. The results presented in Table 3 show that the values of 
E and A are comparable by the two methods of analysis -differential and 
integral forms; but the exponent n depicting the kinetic law is different. The 
reason for accepting n = 1.6 has not been stated by Fong and Chen [ 71, 
except that this value of n gives the best mathematical fit (r = 0.999) of the 
experimental data. In order to re-analyze these data by the new type of 
integral method as suggested here [eqn. (ll)], it would be helpful to rewrite 
eqn. (11) in logarithmic form 

~g(4 -ln(T-TO) = In + -& 
( ) (16) 

The data are fitted to eqn. (16) by linear least-squares method. Different 
published forms of g(cr), as tabulated in Table 4, were used. The results ob- 
tained are given in Tables 5 and 6. 

The new type of differential method [ eqn. (14)] is non-linear in nature. 
This, in logarithmic form, becomes 

In =ln$ -5 0 (17) 

Equation (17) may be solved by iterative method. Any arbitrary value 
may be assumed for E (E > 0) and, using this value, the value of the expres- 
sion on the left-hand side may be calculated for each data point. This, when 
plotted against (l/T) by linear least-squares method, gives new values of E 
(from the slope) and A (from the intercept). This modified value of E is used 
as a starting value for the next iteration which yields another modified value 
of 22. Thus, after a few iterations, consistent values of E and A will be ob- 
tained. Using all the forms of f(a!), as tabulated in Table 4, these data were 
analyzed by eqn. (17) and the results are given in Tables 5 and 6. 

The results clearly show that acceptable values of E and A are obtained 
only for the first seven functions (all of which denote a diffusioncontrolled 
mechanism), leading to the conclusion that the thermal dehydroxylation 
process of Mg(OH)2 is a diffusioncontrolled process--a premise which is 
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contra-indicated by Fong and Chen [‘7]. From a physical point of view also, 
it appears probable that on decomposition (in the solid state) Mg(OH)* 
forms a solid layer of MgO covering the surface of Mg(OH)3. So, for further 
reaction to occur, the product molecules of HZ0 must diffuse out through 
the solid layer of MgG. With time (t) the thickness of the product layer (i.e. 
diffusion path) will increase. Under such circumstances the likelihood of a 
diffusioncontrolled mechanism cannot be ruled out. 

To pin-point the exact kinetic law, the results obtained should be examined 
more critically. It is obvious that for the proper functional forms of g(cr) and 
f(c), the results obtained by integral method [eqn. (16)] should closely agree 
with those obtained by differential method [eqn. (17)]. This condition is 
satisfied when Function No. 3, i.e. Ginstling-Brounshtein’s equation, is used. 
So, it may be concluded that the thermal dehydroxylation process of Mg- 
(OH), obeys Ginstling-Brounshtein’s equation. It would, perhaps, not be 
irrelevant here to note that many other solid&ate reactions which are diffu- 
sioncontrolled follow Ginstling-Brounshtein’s equation [ 10,111. 

Other kinetic parameters for this thermal dehydroxylation process are 

(i) E i 256 kJ mole-’ and A f 7.5 X 10” s-’ (Trace 1) 

(ii) E A 267 kJ mole-l and A A 6.0 X 1016 s-* (Trace 2) 

For comparison, these data were also analyzed by the method of Coats 
and Redfern [4] which is based on eqn. (10). The form of the equation pro- 
posed by them is 

All the forms of g(c), as tabulated in “.:.ble 4, were used to fit the data to 
eqn. (18). Fong and Chen 173 have also analyzed their data by the method 
of Coats and Redfem. As a check, we have independently analyzed these 
data by the method of Coats and Redfern and the results obtained by us, 
which agree with those reported by Fong and Chen [ 71, are given in Table 7. 
It is seen that the values of correlation coefficients (r) for most of the cases 
are greater than 0.990. So, it is rather difficult to pin-point the exact form of 
g(o) unequivocally. Fong and Chen 171, however, proposed Function No. 
20, i.e. f(ar) = (1 -cY)~-~, as the proper kinetic law. But the idea of ascertain- 
ing the kinetic law chiefly from the value of correlation coefficient has been 
objected to by Se&&k [ 121. Therefore, it is difficult to draw 10gicall~ zttxept- 
able conclusions regarding reaction mechanistics from the results tabulated 
in Table 7. But, when the results obtained from eqns. (16) and (17) are 
examined, it is easily possible to identify the proper kinetic law and to rule 
out others. These two methods are therefore more sensitive than other meth- 
ods so far as the logical discrimination is concerned. 

DISCUSSION 

Equation (14) has been derived earlier by various authors [13-16). Mac- 
Callum and Tanner [ 13 J pointed. out that the rate dar/dt of a rpwtion under 



non-isothermal reaction should be written as 
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Thus 

Unless 

( ) 
aT 0 
ar,= 

According to them, eqn. (6) should not be used for non-isothermal reac- 
tions and eqn. (19) should be used instead; various arguments have been 
given [16-M] against this proposal. It has been shown [17] that tZie term 
(da/dT), has no physical meaning, because one cannot change temperature 
(2’) keeping time (t) constant. Even if, for argument’s sake, we assume that 
instantaneous change is possible, aa must be zero, because a cannot change 
instantaneously. But what is more important is that a is a path function and 
not a state function, so eqn. (19) is not valid thermodynamicaily. 

Fevre et al. [ 141 have published a special review on the methods of analysis 
of non-isothermal kinetics. They have pointed out that the rate of reaction 
(da/dt) with non-isothermal kinetics depends upon a supplementary factor: 
the heating rate (p). They have stressed on the fact that the degree of conver- 
sion (a) of reaction is a function of three variables: T (temperature), t (time) 
and p (heating rate). Thus the total differential da is, according to them 

(20) 

Using eqn. (20) they have deduced relationships similar to eqn. (11) [cf. eqn. 
(10) of ref. 141 and eqn. (14) [cf. the equation given on p-432 of ref. 143. 
They have used these relationships to analyze the TG data of the thermal 
dehydration of gypsum, calcium sulfate hemihydrate and calcium oxaIate 
monohydrate, under non-isothermal conditions (with various heating rates). 
The results obtained with this method of analysis led them to believe that 
theoretical formulations of eqns. (11) and (14) are correct. 

Later, Norwisz 1151 also proposed a relationship similar to eqn. (14) 
which is-based on eqn. (19). This was subjected to severe criticism 1191. The 
objections were raised chiefly from a mathematical point of view. But there 
is no doubt regarding the applicability of eqns. (11) and (14) for non-iso- 
thermal kinetics simply because the results obtained therefrom are logically 
acceptable. StiII, the deductions of these two.equations wil.l not be free from 
mathematical discrepancies if eqn. (19) or (20) is used as a starting equation. 
However, the procedure .foIlowed by the present authors to arrive at eqns. 
(11) and (14) is free from any mathematical inconsistency. 

A casual glance at eqn. (.14) will lead onz to conclude that insertion of an 
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F factor, where 

(21) 

will give higher values of dol/dT than those predicted by -eqn. (6). The pre- 
sent authors, however, subscribe to the views expressed by Sest& [19] that 
the reactions really do not proceed faster under non-isothermal conditions, 
as was erroneously concluded by Norwisz [15]. 

Koch et al. [ 20) have analyzed kinetic data of some uni- and biomolecular 
reactions by using eqns. (6) and (14). They observed that the results obtained 
closely agree with isothermal experiments when eqn. (6) was used to analyze 
non-isothermal kinetic data. But, using the same data, the values of E and A 
become much less when analyzed using eqn. (14) than those obtained from 
isothermal analysis. This led them to conclude that eqn. (14) should not be 
applied to non-isoth.rmal analyses. 

As observed by Se&&k 1121, it is necessary to focus attention on “the 
reliability of the g(a) function, the correct establishment of which should be 
the real goal of chemical kinetics”. Only after having logical forms of g(cr ) and 
f(a) should one determine the corresponding E and A values therefrom. We 
therefore believe that Koch et al. [20] would possibly have concluded dif- 
ferently had they tried to fit all the functional forms of f(ar), as tabulated in 
Table 4, into eqn. (14); this would clearly indicate the most logically accept- 
able form of f(a). After establishing the proper form of f(ar), the correspond- 
ing E and A values should be determined, otherwise one may arrive at a 
wrong conclusion. For example, if one analyzes the thermal dehydroxylation 
data of Mg(OH)* as shown here (Table 2), from eqn. (6) one obtains [7] a 
kinetic function of the form 

f(a) = (1 -,)1-S (22) 

with E = 229.14 kJ mole-’ (for Trace 1) and E = 234.75 k-J mole-’ (for 
Trace 2) [cf. Table 73. But when the same data are reanalyzed by eqn. (14) 
using the same f(ar) as shown in eqn. (22), it is observed that E = 159.40 kJ 
mole-’ (for Trace 1; cf. Table 5), and E = 157.63 kJ mole” (for Trace 2; cf. 
Table 6). The reason for this drastic decrease in the value of E is not due to 
the fault of eqn (14), it is due to the faulty assumption that the process 
obeys a kinetic ‘lw as shown in eqn. (22). If, on the other band, Ginstlin~ 
Brounshtein equation is used for f(ar) (cf. Table 4) reasonable values of E 
will be obtained, e.g. E = 255.33 kJ mole” (for Trace 1; cf. Table 5); and 
E = 268.83 kJ mole” (for Trace 2, cf. Table 6). It thus becomes evident that 
if the data are analyzed by eqn. (14), all the forms of f(a!) should be used so 
as to single out the most probable form of f(o), values of E and A are to be 
determined thereafter. 

CONCLUSIONS 

Differential [eqn. (14)] and integral [eqn. (ll)] methods are proposed for 
the analysis of non-isothermal kinetics. Derivations of these two laws do not 
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involve any mathematical or thermodynamical discrepancy. 
When non-isothermal kinetic data are analyzed by these two methods, 

both the methods yield, reasonably good results. The two methods are sensi- 
tive enough to enable discrimination of the proper mechanistic model of the 
reaction in an unambiguous way. 

Various criticisms were raised against these methods when they were pro- 
posed earlier. Attempts have been made here to.discuss some of those objec- 
tions in a logical manner. 

Both the methods [eqns. (16 and (17)] are suitable for computer program- 
ming for’fast computations. 

ACKNOWLEDGEMENT 

The authors wish to thank Prof. H.S. Ray (I.I.T., Kharagpur) for his help- 
ful comments and suggestions in wri+,ing this paper. 

REFERENCES 

1 

3” 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 

z 

:: 
18 
19 
20 
21 

T. Ozawa, Bull. Chem. Sot. Jpn., 38 (1965) 1882. 
C.D. Doyle, J. Appl. Polym. Sci.. 5 (1961) 285. 
C.D. Doyle, J. Appl. Polym. Sci., 6 (1962) 639. 
A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68. 
V.M. Gorbachev, J. Therm. Anal., 8 (1975) 349. 
J. Zsako, J. Therm. Anal., 8 (1975) 593. 
P.H. Fong and D.T.Y. Chen, Thermochim. Acta, 18 (1977) 273. 
D.T.Y. Chen and P.H. Fong, Thennochim. Acta, 18 (1977) 161. 
V. Satava, Thermochim. Acta, 2 (1971) 423. 
R.V. Harrington, J.R. Hutchins, III and J.D. Sherman, Advances in Glass Technology, 
Am. Ceram. Sot., Plenum Ress, New York, 1962. p. 75. 
M&Cable, 8th Int. Congr. Glass. Society of Glass Technology, Sheffield, 1969, p. 163. 
J.Se&ik, J. Therm. Anal., 16 (1979) 503. 
J.R. MacCallum and J. Tanner, Nature (London), 225 (1970) 1127. 
A. Few-e, M. Murat and C. Comel, J. Therm. Anal., 12 (1977) 429. 
J. Norwisz, Thermochim. Acta, 25 (1978) 123. 
R.A.W. Hill, Nature (London), 227 (1970) 703. 
R.M. Felder and E.P. Stahel, Nature (London), 228 (1970) 1085. 
P.D. Gam, J. Therm. Anal., 6 (1974) 237. 
J.&st&k, Tbermochim. Acta, 31(1979) 129. 
E. Koch, B. Stilkerieg and L. Carlsen, Thennochim. Acta, 33 (1979) 387. 
R.E. Carter, J. Chem. Phys., 34 (1961) 2010. 


